Source code for modAL.models.learners

import numpy as np

from typing import Callable, Optional, Tuple, List, Any

from sklearn.base import BaseEstimator
from sklearn.metrics import accuracy_score

from modAL.models.base import BaseLearner, BaseCommittee
from modAL.utils.validation import check_class_labels, check_class_proba
from modAL.utils.data import modALinput
from modAL.uncertainty import uncertainty_sampling
from modAL.disagreement import vote_entropy_sampling, max_std_sampling
from modAL.acquisition import max_EI

"""
Classes for active learning algorithms
--------------------------------------
"""


[docs]class ActiveLearner(BaseLearner): """ This class is an abstract model of a general active learning algorithm. Args: estimator: The estimator to be used in the active learning loop. query_strategy: Function providing the query strategy for the active learning loop, for instance, modAL.uncertainty.uncertainty_sampling. X_training: Initial training samples, if available. y_training: Initial training labels corresponding to initial training samples. bootstrap_init: If initial training data is available, bootstrapping can be done during the first training. Useful when building Committee models with bagging. **fit_kwargs: keyword arguments. Attributes: estimator: The estimator to be used in the active learning loop. query_strategy: Function providing the query strategy for the active learning loop. X_training: If the model hasn't been fitted yet it is None, otherwise it contains the samples which the model has been trained on. If provided, the method fit() of estimator is called during __init__() y_training: The labels corresponding to X_training. Examples: >>> from sklearn.datasets import load_iris >>> from sklearn.ensemble import RandomForestClassifier >>> from modAL.models import ActiveLearner >>> iris = load_iris() >>> # give initial training examples >>> X_training = iris['data'][[0, 50, 100]] >>> y_training = iris['target'][[0, 50, 100]] >>> >>> # initialize active learner >>> learner = ActiveLearner( ... estimator=RandomForestClassifier(), ... X_training=X_training, y_training=y_training ... ) >>> >>> # querying for labels >>> query_idx, query_sample = learner.query(iris['data']) >>> >>> # ...obtaining new labels from the Oracle... >>> >>> # teaching newly labelled examples >>> learner.teach( ... X=iris['data'][query_idx].reshape(1, -1), ... y=iris['target'][query_idx].reshape(1, ) ... ) """ def __init__(self, estimator: BaseEstimator, query_strategy: Callable = uncertainty_sampling, X_training: Optional[modALinput] = None, y_training: Optional[modALinput] = None, bootstrap_init: bool = False, **fit_kwargs ) -> None: super().__init__(estimator, query_strategy, X_training, y_training, bootstrap_init, **fit_kwargs)
[docs] def teach(self, X: modALinput, y: modALinput, bootstrap: bool = False, only_new: bool = False, **fit_kwargs) -> None: """ Adds X and y to the known training data and retrains the predictor with the augmented dataset. Args: X: The new samples for which the labels are supplied by the expert. y: Labels corresponding to the new instances in X. bootstrap: If True, training is done on a bootstrapped dataset. Useful for building Committee models with bagging. only_new: If True, the model is retrained using only X and y, ignoring the previously provided examples. Useful when working with models where the .fit() method doesn't retrain the model from scratch (e. g. in tensorflow or keras). **fit_kwargs: Keyword arguments to be passed to the fit method of the predictor. """ self._add_training_data(X, y) if not only_new: self._fit_to_known(bootstrap=bootstrap, **fit_kwargs) else: self._fit_on_new(X, y, bootstrap=bootstrap, **fit_kwargs)
""" Classes for Bayesian optimization --------------------------------- """
[docs]class BayesianOptimizer(BaseLearner): """ This class is an abstract model of a Bayesian optimizer algorithm. Args: estimator: The estimator to be used in the Bayesian optimization. (For instance, a GaussianProcessRegressor.) query_strategy: Function providing the query strategy for Bayesian optimization, for instance, modAL.acquisitions.max_EI. X_training: Initial training samples, if available. y_training: Initial training labels corresponding to initial training samples. bootstrap_init: If initial training data is available, bootstrapping can be done during the first training. Useful when building Committee models with bagging. **fit_kwargs: keyword arguments. Attributes: estimator: The estimator to be used in the Bayesian optimization. query_strategy: Function providing the query strategy for Bayesian optimization. X_training: If the model hasn't been fitted yet it is None, otherwise it contains the samples which the model has been trained on. y_training: The labels corresponding to X_training. X_max: argmax of the function so far. y_max: Max of the function so far. Examples: >>> import numpy as np >>> from functools import partial >>> from sklearn.gaussian_process import GaussianProcessRegressor >>> from sklearn.gaussian_process.kernels import Matern >>> from modAL.models import BayesianOptimizer >>> from modAL.acquisition import optimizer_PI, optimizer_EI, optimizer_UCB, max_PI, max_EI, max_UCB >>> >>> # generating the data >>> X = np.linspace(0, 20, 1000).reshape(-1, 1) >>> y = np.sin(X)/2 - ((10 - X)**2)/50 + 2 >>> >>> # assembling initial training set >>> X_initial, y_initial = X[150].reshape(1, -1), y[150].reshape(1, -1) >>> >>> # defining the kernel for the Gaussian process >>> kernel = Matern(length_scale=1.0) >>> >>> tr = 0.1 >>> PI_tr = partial(optimizer_PI, tradeoff=tr) >>> PI_tr.__name__ = 'PI, tradeoff = %1.1f' % tr >>> max_PI_tr = partial(max_PI, tradeoff=tr) >>> >>> acquisitions = zip( ... [PI_tr, optimizer_EI, optimizer_UCB], ... [max_PI_tr, max_EI, max_UCB], ... ) >>> >>> for acquisition, query_strategy in acquisitions: ... # initializing the optimizer ... optimizer = BayesianOptimizer( ... estimator=GaussianProcessRegressor(kernel=kernel), ... X_training=X_initial, y_training=y_initial, ... query_strategy=query_strategy ... ) ... ... for n_query in range(5): ... # query ... query_idx, query_inst = optimizer.query(X) ... optimizer.teach(X[query_idx].reshape(1, -1), y[query_idx].reshape(1, -1)) """ def __init__(self, estimator: BaseEstimator, query_strategy: Callable = max_EI, X_training: Optional[modALinput] = None, y_training: Optional[modALinput] = None, bootstrap_init: bool = False, **fit_kwargs) -> None: super(BayesianOptimizer, self).__init__(estimator, query_strategy, X_training, y_training, bootstrap_init, **fit_kwargs) # setting the maximum value if self.y_training is not None: max_idx = np.argmax(self.y_training) self.X_max = self.X_training[max_idx] self.y_max = self.y_training[max_idx] else: self.X_max = None self.y_max = -np.inf def _set_max(self, X: modALinput, y: modALinput) -> None: max_idx = np.argmax(y) y_max = y[max_idx] if y_max > self.y_max: self.y_max = y_max self.X_max = X[max_idx] def get_max(self) -> Tuple: """ Gives the highest value so far. Returns: The location of the currently best value and the value itself. """ return self.X_max, self.y_max
[docs] def teach(self, X: modALinput, y: modALinput, bootstrap: bool = False, only_new: bool = False, **fit_kwargs) -> None: """ Adds X and y to the known training data and retrains the predictor with the augmented dataset. This method also keeps track of the maximum value encountered in the training data. Args: X: The new samples for which the values are supplied. y: Values corresponding to the new instances in X. bootstrap: If True, training is done on a bootstrapped dataset. Useful for building Committee models with bagging. (Default value = False) only_new: If True, the model is retrained using only X and y, ignoring the previously provided examples. Useful when working with models where the .fit() method doesn't retrain the model from scratch (for example, in tensorflow or keras). **fit_kwargs: Keyword arguments to be passed to the fit method of the predictor. """ self._add_training_data(X, y) if not only_new: self._fit_to_known(bootstrap=bootstrap, **fit_kwargs) else: self._fit_on_new(X, y, bootstrap=bootstrap, **fit_kwargs) self._set_max(X, y)
""" Classes for committee based algorithms -------------------------------------- """
[docs]class Committee(BaseCommittee): """ This class is an abstract model of a committee-based active learning algorithm. Args: learner_list: A list of ActiveLearners forming the Committee. query_strategy: Query strategy function. Committee supports disagreement-based query strategies from :mod:`modAL.disagreement`, but uncertainty-based ones from :mod:`modAL.uncertainty` are also supported. Attributes: classes_: Class labels known by the Committee. n_classes_: Number of classes known by the Committee. Examples: >>> from sklearn.datasets import load_iris >>> from sklearn.neighbors import KNeighborsClassifier >>> from sklearn.ensemble import RandomForestClassifier >>> from modAL.models import ActiveLearner, Committee >>> >>> iris = load_iris() >>> >>> # initialize ActiveLearners >>> learner_1 = ActiveLearner( ... estimator=RandomForestClassifier(), ... X_training=iris['data'][[0, 50, 100]], y_training=iris['target'][[0, 50, 100]] ... ) >>> learner_2 = ActiveLearner( ... estimator=KNeighborsClassifier(n_neighbors=3), ... X_training=iris['data'][[1, 51, 101]], y_training=iris['target'][[1, 51, 101]] ... ) >>> >>> # initialize the Committee >>> committee = Committee( ... learner_list=[learner_1, learner_2] ... ) >>> >>> # querying for labels >>> query_idx, query_sample = committee.query(iris['data']) >>> >>> # ...obtaining new labels from the Oracle... >>> >>> # teaching newly labelled examples >>> committee.teach( ... X=iris['data'][query_idx].reshape(1, -1), ... y=iris['target'][query_idx].reshape(1, ) ... ) """ def __init__(self, learner_list: List[ActiveLearner], query_strategy: Callable = vote_entropy_sampling) -> None: super().__init__(learner_list, query_strategy) self._set_classes() def _set_classes(self): """ Checks the known class labels by each learner, merges the labels and returns a mapping which maps the learner's classes to the complete label list. """ # assemble the list of known classes from each learner try: # if estimators are fitted known_classes = tuple(learner.estimator.classes_ for learner in self.learner_list) except AttributeError: # handle unfitted estimators self.classes_ = None self.n_classes_ = 0 return self.classes_ = np.unique( np.concatenate(known_classes, axis=0), axis=0 ) self.n_classes_ = len(self.classes_) def _add_training_data(self, X: modALinput, y: modALinput): super()._add_training_data(X, y)
[docs] def fit(self, X: modALinput, y: modALinput, **fit_kwargs) -> 'BaseCommittee': """ Fits every learner to a subset sampled with replacement from X. Calling this method makes the learner forget the data it has seen up until this point and replaces it with X! If you would like to perform bootstrapping on each learner using the data it has seen, use the method .rebag()! Calling this method makes the learner forget the data it has seen up until this point and replaces it with X! Args: X: The samples to be fitted on. y: The corresponding labels. **fit_kwargs: Keyword arguments to be passed to the fit method of the predictor. """ super().fit(X, y, **fit_kwargs) self._set_classes()
[docs] def teach(self, X: modALinput, y: modALinput, bootstrap: bool = False, only_new: bool = False, **fit_kwargs) -> None: """ Adds X and y to the known training data for each learner and retrains learners with the augmented dataset. Args: X: The new samples for which the labels are supplied by the expert. y: Labels corresponding to the new instances in X. bootstrap: If True, trains each learner on a bootstrapped set. Useful when building the ensemble by bagging. only_new: If True, the model is retrained using only X and y, ignoring the previously provided examples. **fit_kwargs: Keyword arguments to be passed to the fit method of the predictor. """ super().teach(X, y, bootstrap=bootstrap, only_new=only_new, **fit_kwargs) self._set_classes()
[docs] def predict(self, X: modALinput, **predict_proba_kwargs) -> Any: """ Predicts the class of the samples by picking the consensus prediction. Args: X: The samples to be predicted. **predict_proba_kwargs: Keyword arguments to be passed to the :meth:`predict_proba` of the Committee. Returns: The predicted class labels for X. """ # getting average certainties proba = self.predict_proba(X, **predict_proba_kwargs) # finding the sample-wise max probability max_proba_idx = np.argmax(proba, axis=1) # translating label indices to labels return self.classes_[max_proba_idx]
[docs] def predict_proba(self, X: modALinput, **predict_proba_kwargs) -> Any: """ Consensus probabilities of the Committee. Args: X: The samples for which the class probabilities are to be predicted. **predict_proba_kwargs: Keyword arguments to be passed to the :meth:`predict_proba` of the Committee. Returns: Class probabilities for X. """ return np.mean(self.vote_proba(X, **predict_proba_kwargs), axis=1)
[docs] def score(self, X: modALinput, y: modALinput, sample_weight: List[float] = None) -> Any: """ Returns the mean accuracy on the given test data and labels. Todo: Why accuracy? Args: X: The samples to score. y: Ground truth labels corresponding to X. sample_weight: Sample weights. Returns: Mean accuracy of the classifiers. """ y_pred = self.predict(X) return accuracy_score(y, y_pred, sample_weight=sample_weight)
[docs] def vote(self, X: modALinput, **predict_kwargs) -> Any: """ Predicts the labels for the supplied data for each learner in the Committee. Args: X: The samples to cast votes. **predict_kwargs: Keyword arguments to be passed to the :meth:`predict` of the learners. Returns: The predicted class for each learner in the Committee and each sample in X. """ prediction = np.zeros(shape=(X.shape[0], len(self.learner_list))) for learner_idx, learner in enumerate(self.learner_list): prediction[:, learner_idx] = learner.predict(X, **predict_kwargs) return prediction
[docs] def vote_proba(self, X: modALinput, **predict_proba_kwargs) -> Any: """ Predicts the probabilities of the classes for each sample and each learner. Args: X: The samples for which class probabilities are to be calculated. **predict_proba_kwargs: Keyword arguments for the :meth:`predict_proba` of the learners. Returns: Probabilities of each class for each learner and each instance. """ # get dimensions n_samples = X.shape[0] n_learners = len(self.learner_list) proba = np.zeros(shape=(n_samples, n_learners, self.n_classes_)) # checking if the learners in the Committee know the same set of class labels if check_class_labels(*[learner.estimator for learner in self.learner_list]): # known class labels are the same for each learner # probability prediction is straightforward for learner_idx, learner in enumerate(self.learner_list): proba[:, learner_idx, :] = learner.predict_proba(X, **predict_proba_kwargs) else: for learner_idx, learner in enumerate(self.learner_list): proba[:, learner_idx, :] = check_class_proba( proba=learner.predict_proba(X, **predict_proba_kwargs), known_labels=learner.estimator.classes_, all_labels=self.classes_ ) return proba
[docs]class CommitteeRegressor(BaseCommittee): """ This class is an abstract model of a committee-based active learning regression. Args: learner_list: A list of ActiveLearners forming the CommitteeRegressor. query_strategy: Query strategy function. Examples: >>> import numpy as np >>> import matplotlib.pyplot as plt >>> from sklearn.gaussian_process import GaussianProcessRegressor >>> from sklearn.gaussian_process.kernels import WhiteKernel, RBF >>> from modAL.models import ActiveLearner, CommitteeRegressor >>> >>> # generating the data >>> X = np.concatenate((np.random.rand(100)-1, np.random.rand(100))) >>> y = np.abs(X) + np.random.normal(scale=0.2, size=X.shape) >>> >>> # initializing the regressors >>> n_initial = 10 >>> kernel = RBF(length_scale=1.0, length_scale_bounds=(1e-2, 1e3)) + WhiteKernel(noise_level=1, noise_level_bounds=(1e-10, 1e+1)) >>> >>> initial_idx = list() >>> initial_idx.append(np.random.choice(range(100), size=n_initial, replace=False)) >>> initial_idx.append(np.random.choice(range(100, 200), size=n_initial, replace=False)) >>> learner_list = [ActiveLearner( ... estimator=GaussianProcessRegressor(kernel), ... X_training=X[idx].reshape(-1, 1), y_training=y[idx].reshape(-1, 1) ... ) ... for idx in initial_idx] >>> >>> # query strategy for regression >>> def ensemble_regression_std(regressor, X): ... _, std = regressor.predict(X, return_std=True) ... query_idx = np.argmax(std) ... return query_idx, X[query_idx] >>> >>> # initializing the CommitteeRegressor >>> committee = CommitteeRegressor( ... learner_list=learner_list, ... query_strategy=ensemble_regression_std ... ) >>> >>> # active regression >>> n_queries = 10 >>> for idx in range(n_queries): ... query_idx, query_instance = committee.query(X.reshape(-1, 1)) ... committee.teach(X[query_idx].reshape(-1, 1), y[query_idx].reshape(-1, 1)) """ def __init__(self, learner_list: List[ActiveLearner], query_strategy: Callable = max_std_sampling) -> None: super().__init__(learner_list, query_strategy)
[docs] def predict(self, X: modALinput, return_std: bool = False, **predict_kwargs) -> Any: """ Predicts the values of the samples by averaging the prediction of each regressor. Args: X: The samples to be predicted. **predict_kwargs: Keyword arguments to be passed to the :meth:`vote` method of the CommitteeRegressor. Returns: The predicted class labels for X. """ vote = self.vote(X, **predict_kwargs) if not return_std: return np.mean(vote, axis=1) else: return np.mean(vote, axis=1), np.std(vote, axis=1)
[docs] def vote(self, X: modALinput, **predict_kwargs): """ Predicts the values for the supplied data for each regressor in the CommitteeRegressor. Args: X: The samples to cast votes. **predict_kwargs: Keyword arguments to be passed to :meth:`predict` of the learners. Returns: The predicted value for each regressor in the CommitteeRegressor and each sample in X. """ prediction = np.zeros(shape=(len(X), len(self.learner_list))) for learner_idx, learner in enumerate(self.learner_list): prediction[:, learner_idx] = learner.predict(X, **predict_kwargs).reshape(-1, ) return prediction